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Hydrodynamic Instabilities in Inertial Fusion

Nelson M. Hoffman

Introduction and Survey

An ideal inertial-ccmilnement-fusion (ICF) implosim is exactly spherically symmetric.
If the implosion departs from spherical symmetry, the imploding capsule’s performance
is degraded in several ways: the conversion of the imploding shell’s kinetic energy to the
fuel’s internal energy may be less efkient, the compression of the fhel to high density
may be less extreme, and the surface area through which the fuel loses energy by thermal
conduction may be increased. In severe cases, asymmetry can lead to the breakup of
the imploding shell (at larger spatial scales) or the creation of hydrodynamic turbulence
(at smaller spatial scales). Turbulence in turn may have a numlmr of deleterious fiects,
involving the turbulent transport of mass, momentum, and energy in ways that corrupt
the highly orgtied evolving structure of the imploding capsule.

ICF implosions, whether real or ideal, are subject to a variety of hydrodynamic insta-
bilities that amplify small departures from spherical symmetry. Instabilities can cause a
disturbance to grow from an amplitude which may at first seem insignificant to a level that
can seriously disrupt the flow, M described above. Instabilities do not themselves generate
the initial asymmetric disturbance, or ‘seed”, from which the 6.rIal disruption grows. In-
stead, the seeds arise from limitations in our abilit y to fabricate perfectly spherical shells, to
generate perfectly uniform laser beams, or to create perfectly symmetric thermal radiation
fields in hohlraums. Small perturbations of a capsule’s mu-face caused by the roughness of
the mate~ial’s crystal structure, or by machining marks from the fabrication process, are
examples oi instability seeds. Other examples inciude the interference phttern in a focused
laser spot, wti.ch can imprint disturbances on an initially smooth surface irradiated by
the laser. Thus the seeds simply refiect the inevitable deviation of real-world experiments
from the idealized constructs of theory. Instabilities then cause these seeds to grow to a
size that may have serious consequences for an ICF implosion.

Hydrodynamic instabilities are straightforward consequences of the conservation equa-
tions of hydrodynamics. They are in fact nothing more than solutions to these equations
for specific initial md boundary corlditions corresponding to somewhat simplified versions
of real flow fields. For example, the Rayleigh-Taylor instability, which we shall encounter
often in ICF in a generalized form, arises in the case of two initially motionless incornpress
ible fluid layers of unequal density, where the denser f!uid is supported atop the less dense
fluid in a gravitational field. If the interface, or contact surface, between the layers is dis-
turbed so as not to be exactly horizontal, then the Rayleigh-Taylor instability ensues. The
interface disturbance, which is the initial seed in this case, grows until eventually bubbles
of the less dense fluid ascend through the denser fluid while jets or “spikes” of the denser
fluid plunge downward through the less dense fluid. The Rayleigh-’hylor instability is
never encountered in this precise form in ICI?, because gravitation plays no role in an ICF
implcsion; the time and space scales of ICF are simply too small. However, the accelerat-
ing and decelerating forces produced by pressure gradients E.cting on the shell of an ICF
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capmde are efktiwiy analogous to gravity. Thus hydrodynamic phenomena ark which
are for all practical purposta equivalent to the Rayleigh-Tbylor instability, appropriately
generalized for compressible flow fields which are converging or diverging, which do not
neceasady have sharp boundaries separating iluids of d&rent density, and in which the
acceleration force is not necessady constant in time.

A related instability is the ablation-surface instability, sometimes called “Rayleigh-
Taylor instability at an ablation surface.” This occurs when intense radiation, either laser
or thermal, heats a material interface and ablates it. The ablated material flows away horn
the interface, creating a h.igh-preamre, low-density corona which accelerates the unablated
material. The density decrease from u.nablated to abl ~ted material mrreapon& to the
contact surface between the two fluids in the incompressible Rayleigh-~ylor instability,
while the pressure increase horn u.nablated to ablated material gives an acceleration force.

Other instabilities of particular consequerice for ICF are the Richtmya--Whkov in-
stability y and the Kelvin- Hehnholtz instability. The Richtmyer-Meshkov instability occurs
when a shock wave crosses the interface between two fluids of unequal density, ,A’aveling in
a dir-tion normal to the interface. This can be viewed as the limiting case of a Rayleigh-
Taylor instability in which gravity acts for an infinitesimally short duration on the fluids,
imparting an impulsive acceleration to the interface and generating fluid motions that
persist even in the absence of gravity. The Kelvin-Helrnholtz instability arises when the
t-am fluids are init~rdly in motion, and there is a variation acrosq the interface of the veloc-
ity component parallel to the interface. Such a gradient in the parallel velocity, referred
to as “velocity shear” , is unstable if it is suf&iently severe, and leads to the creation of
vortices which entrain the two fluids in a characteristic whirling rotational motion. The
Kelvin-Helmholtz instability can arise along the interface between the ascending bubbles
and descending spikes of late-stage Rayleigh-Taylor imitability, where the shear due to the
differential motion of these structures can be significant. Other circumstances giving rise
to Kelvin-Helmholtz instability include the case of a shock wave creasing an interface in a
direction not precisely normal to the interface. Shear is generated by the deviatioD from
strict normality, so that both Kelvin-Helmholtz and Richtmyer-Mesbkov instability can
occur in this situation.

The occurrence of instabilities in an ICF implosion
Ablation-surface instability during ablative acceleration

Richtmyer-Meshkov, Kelvin-Hehnholtz during shock emergence
Rayleigh-Taylor during deceleration

A. Linear analysis of Rayleigh-’lhylor Instability

It is worthwhile to derive from basic principles the ~mall-amplitude behavior of t!ie

Rayleigh-Taylor instability, both because we shall thereby discover some of the properties
of the instability and because the exercise will serve as an example of the technique of
linear perturbation analysis, widely used in instability studies. Our starting point is the
system of equations describing the hydrodynamic motion of an ideal fluid (that is, a fluid
in which there is no energy dissipation or heat exchange), known as the Euler equations:

2



(1)

8V
P~+Ptv”vhf=-vp+PIY (2)

Equation (1) ti called the wntinuitg equation and Eq. (2) is called the c.gudion of motion
or momentum equation. Here p, v = Vxi + Vyf + VA ~d p denote respectively the d~ty,
velocity, and pressure of the fluid. An external force, such aa gravity, acting on the fluid
is represented by g = @ + gy$ + I@. h the particular example of Rayleigh-!hylor
inst[bbility we shalJ consider, the fluids meet at a horizontal interface end are initially at
rest. We take the normal to the interface as the direction 5 , so that gravity acts along 5:
g = G*. Sinu gravity acts dowm ara gz <0 and g = –lg,12. All physical quantities are
initially uniform throughout both fluids, away horn the interface.

To investigate the stability of hydrodynamic motion, we ask how the motion reapon&
to a small fluctuation in the value of any of the flow variables appearing in the Euler
equations. If the fluctuation grows in amplitude so that the flow never rt=:urns to its
initial state, we say that the flow is undable with respect to fluctuations of that type.
Accordingly, we rephwe the variables in Eqs. (1) and (2) aa follows:

P= PO+P1)
v =Vo+vl,

P= PO+P1”

The qu ntities with subscripts “O” represent the unperturbed, or %eroth-order” mo-
tion of the fluid, and thus must themselves satisfy I@. (1) and [2). The quantities with
~ubscripts “l” represent a small perturbation about the zeroth-order quantities; that is,

pl << PO,VI << VO, and pl << PO. Substituting these eqmssiona into Eqs. (1) and (2)
gives

~(po+pl)+V. [(po+p])(vo+vl)l ‘o?
at

(PO + PI )8(V0 + VI )

a
+ (po + pl)[(vo, + w) “V](vo + Vl) = -Wo +Pl) + (Po + Plk

or

~Po & v
Ti+ &+

“(po~’o + Plvo + povl + plw) = 0, (3)

ho av~ af~a’+po=+Pl~+
Po~+Pl &

Po(vo"vvo+ vl"vvo+vo "vvl+vl "vvl)+Pl(vo "vvo+vl "vvo+vo "vvl+vl"vvl) =

–VP(J - Vp, + p.g + p~g. (4)



The &t that the ze.roth-order quantiti= satisfy Eqs. (1) and (2) means

(5)

&o
pow + Po(vo “ V)vo = -Vpo + peg. (6)

We can subtract the zeroth-order equations Eqs. (5) and (6) km Eqs. (3) and (4).
This amounts to dropping all terms in Eqs. (3) and (4) which contain no appearances
of the subscript “1”. l?hrthezmmre, we can omit terms in Ii@. (3) and (4) which contain
products of fit-order ~uantities, since they are very small in comparison k terms which
are linear in fit-order quantities. This proums of omission of quadratic quantities, by
which we obtain a system of linear partial differential equations, is called kneatization
of the perturbed equations. Linearization is valid only if the perturbations are small. It
means in edkt that we drop all terms in Eqs. (3) and (4) in which the subscript “1”
appears twice. The result of linearizing and of subtracting the zeroth-order equations is
that Eqs. (3) and (4) become

(7)

avl) av,
Pl~+Po~ + PO(V1“Vv) + Vo “Vvl) + pl(vo “m%) = –Vpl + #lg. (8)

We now restrict our attention to the Rayleigh-Taylor instability in particular. For the
problem as it was posed earlier, the fluids are initially at rest. This means that V. = O, so
that Eqs. (7) and (8) become

(9)

(lo)

We now appeal to the fact that, for many situations of interest in ICF, unstable flow
occurs at velocities much smaller than the local sound speed. This haa the efkct that
accelerations in the flow are not strong enough to change the density of a fluid element
significantly, so the fluid moves without compressing or expanding. In such a situation we
call the flow incompmssible, Provided that we are well away from shock waves or centers
of convergence, the assumption of incompremible f!ow is often valid. To say that fluid
elements move without changing density is to say that the Lagrangian total derivative of
density is ‘zero, that is,

8p
~+v. vp=o. (11)

Applying this equation to our instability analysis, we substitute the perturbed expres-
sions p = po+pltmdv = V. + VI into Eq. (11), and recall that both V. and the time



derivative of ~ vanish, since they describe the static initial state. We & linearize the
result, dropping nonlinear terms in the tit-order quantities, as before. The result is that
Eq. (11) becomes

(12)

Comparing this equation to Eq. (9), which we fite in expanded form as

ap~
~+pov”vl+vl”vpo=o, . - (13)

we see that subtracting Eq. (12) from Eq. (13) yields

v“v~=o. (14)

This is a consequence of the sasumption of incompressibk flow. We can use either Eq.
(12) or Eq. (14) to replace the linearized continuity equation Eq. 9 under this assumption.

To proceed, we write out the ve’. I r equations (10) and (12) in component form. The

linearized momentum equation (10 j L-ores

while the linearized inccmprasible continuity equation (12) beconies

Because gravity acts only in the i direction, gz = g, = O. l%rthermore, since po is uniform
throughout each medium, with its only Variatior occurring across the horizontal interface,
we have dpo /~z = ~po/~J = O, while dpo/& is non-zero, but only at the interface. Thus
the lhw.arized incompressible compofient equations may be written, using g = lg. I = -g.,

aqz = ap~
Po— –—-,at az

a’,y = Opl——
‘oat *’

(15)

(16)

(17)

(18)
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It will nlso be usefid to have
flow, in component form:

Eq. (14), which e.xp~ the nondivergerm of the first-order

(19)

The next step in ouz anal@s i~ to carry out B Fourier transformation of the system m-
equations (15) - (19). This is a powerfd technique for the solution of difkrential equations,

because of a useful property of %uzier transfomns: if F~(t)] is the Fourier transform of
the fuuction ~(t) with rmpect to the independent variable t,then the Fouzier transform of
the derivative d~/dt is

F[dJ/dt] = isF’[~(t)],

where s is the tramform variable. Thus a di.fkrential operator acting on a physical quan-
tity becomes simply a product of the corresponding transform variable and the Fourier
transform of that quantity. Acmrdingly we ddne the following twdimensional Fourier
transforms with respect to z and y:

V]z(k=, kw, z,t) = F=,[vl=(2, ~,z, t)]

i+md. 1+- dy Wl=(z,v, z,t) . ‘!k”z+k’~),

Vlv(h, &y,z,~) = R“ivlJ%Y, %~)]l

v“z(kz, kv, z,~) = F’z*[ul*(~,;.z,~)],

P(kz, k,, z,t) = ~z~bl(z, $/,z, ~)],

R(k=,kF,2,tj = %[Pl(W%Ol.

We do not transform with respect to z, because the 2 direction dcwa not share the symmetry
of the other two directions; the linearized component equations (15)-(19) are invariant
under the interchange of z and y, and it will turn out that solutions are waves in the (z, y)
plane. Furthermore, zeroth-order quantities such as p. are not functions of z and y, which
simplifies the Fowier integrals. ‘rhe transform variables k= and k~ are called the A and ~

components, respectively, of the wauewechr k, whose magnitude k =
G

k2 + k2 is called

the wavenumter.
Additionally, we shall seek solutions whtwe time dependence is proportional to e~~.

This is a stand~rd procedure when Fourier transforming differential equations. If, for
example, we suppose that

vl~(kz,kv,z,t) = ~lg(k=, k“, z)e~:,

then
w“ ~

T
= ~VlEe7’ = ~Vlz.

Thus, again, a derivative can be raplaced by a product. The variable ~ is called the
fiquencp.
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Performing the Fourier transforms of the component equationa (15)-(19), and making

the esarnptmn that the time dependence of the solution is gi mn by efi, where ~ may lM
B function of k= and kv, mmlta in

~~V1= = -ikzf, (20)

T~V1p = -i&tP, (21)

8P
ypov]. = -~ – g~ (22)

(23)

av~#
ik=Vl= + ik9V1B + —

8Z = 0“
(24)

The solution of the equations (20) - (24) is now straightforward Multiply Eq. (20)
by ik= and multiply Eq. (21) by ikB:

i~pOk=V1= = k=2P,

i-ypokBV1v= kH2P.

Add these equations:
iypo(kzV1= + kBVlv) = (kzz + kv2)P. (25)

hrn Eq. (24), solve for kZV1= + kYVIV = iWIZ/dz and substit~te in Eq. (25):

(26)

using kz = k: + k:, the square of the wavenu.mber, Next we eliminate R between Eqs.
(22) and (23). Equaticn (23) implies

which we may substitute into Eq. (22) to obtain

aP apo
%l*K.— = -7povl* + ;

az

Finally, solving for P from Eq. (26) and inserting here we fid

(27)
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Evcrywh-except at the interface, POin cnnstant, DOita z-derivative vanishea and ~

may be canceled km F-q. (2:), leaving

twt.
~ = k’vl..

The general solution to this equation is

VI. = Ae+&’ + J3e-~’.

TLe vertical velocity should vanish at large distances from the interface, and so we
~~#Lmlution tith A#O, D=Ofm z< Oandwith A=0,13#Oforz>0. Inorder
that VIZ be continuous across the interfhce, we wdect

where W = VIZ(Z = O) is the value at the interface.
The derivative W1 ./8z is not continuo~ however. It has the value kW immediately

below the interface and - kW immediately above. Equation (27) expresses the relationship
between the discontinuity in WI Z/ilz and the discontinuity in density. We can use this
relationship, which is essentially a boundary condition at the interface, to determine the
frequency ~ in terms of the gravity, the wavevector, and the density jump.

To do so, we integrate Eq. (27) over au inhitesimal element of z that includes the
interface z = O. The derivative of a quantity, when integrated, then gives simply the
change in the value of that quantity across the interface. Thus the left-hand side of Eq.
(27) integmtes to

= -kw(~abooe + pb~[ow)= II,

where p~boV~= po(z > O) is the density in the upper fluid and ~b./OW s po(z < O) is the
density ‘n the lower fluid. The first term on the right-hand side of Eq. (27) gives, upon
integration,

/

e
k2poV’ .dz = k2w(pabOv,e + pbelowf) s 12.

-t

The second term on the right-hand side of Eq. (27) gives

-1
f k2Wg ‘ ~po dz kzWgg ap”dz = __—

k2pov’zaZ
I

.—
-e 72 _,z = yz

f

-f
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Inthelimit thatepte zem,12mnida, because itispmpmtkd tc)e.onthe

other lured, 11 and Ia are fhite; they are, in efhct, in-cd delta functiom. The we
musthnve Il=180r

-Wv(p.~ + p&.&)
k2Wg

= -~(P4e*. - Pbvlev).

scdving for 7, w obtain
= kg (Pabove- Pbel*.)

7=
(Pabeve + Pbdew)”

De6rie a dimensiordesn number A, called the Atwood nub.

~ = (Fake - Pbvk)

- (move + Pkltw) “

Then 72 = kgA. Since solutions depend on time as e~, we have, for example,

{

~(k=, kB)e+LZe*, z <0
VI= =

~(k=, k,)e }
-kzewz > (-j -

~ ~abowe> Pbelovv then A is positive, the interface is unstable, and the perturbation grows
exponentially with growth rate -y = ~. If, ~ the other bnd, ~.kove < ~LelmW,th~ A
is negative, 7 is imaginary, and the interface oscillates with bequency Im(~) = ~.

B. Ablation-Surface Instability

The ablation-surface instability occurs when a material layer is rapidly heated by some
energy-deposition process and ablates. If the spatial extent of the energy-deposition region
is small with respect to the depth of the layer, then a high-pressure Iow-densit y region forms
adjacent to the layer, which accelerates the layer. The low-density region is composed of
heated ablating material expanding away hm the layer’s surface. The acceleration of the
high-density layer by the low-density ablated material is analogous to the support of a
high-density fluid by a low-density fluid in a gravitational field, so an instability arises.
This ablation-surface instability is much like the classical Rayleigh-Taylor instability, just
discussed, but differs because of the flow of material out of the high-density layer, across
the ablat!on surface, and into the low-density ablated region. Furtherrnom, gravity plays
no role.

If we approximate the energy-deposition region as a discontinuity, we can make a rough
estimate (following Gamaly 1993) of the effect of ablation on the growth of perturbations
by repeating the Rayleigh-Taylor analysis with a simple change: because of the ablation
flow, we permit a velocity discontinuity at the interface as well as a density discontinuity.
This means that the zeroth-order state is not static, so that we cannot set V. = O in our
linear perturbation analysis,

We consider a reference frame moving with the layer. In this frame, the layer is at
rest, and the ablating material moves in the –ii direction with velocit~ v.bl. Thus

Vo =
‘oab/fi,Z <0 10,2>0 “
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ihribg Eq. (8), dttm PWty, and -W --- VO @v-
av, &o—+ WJ”VV())+FO(VI “Vvo+vo”vw)==-vpl.lh~ +Pl( & (*a)

Rewriting ~. (6) and omitting gravity gives

Ovo~+vo”vvo = .L7po. (*b)
ta

We may substitute this expression for the total Lagra@an derivative of VO into Eq. (“a)
and rearrange terms to obtain

av~
PO(= + V1 ‘1 VW - Vp,.“vvo+vo. vv, )=~ (*C;

Just aa i.n the classical Rayleigh-T@or analysis, wc take the twcdirnensional Fouzier
trazwform of the z-component of Eq. (*c), assuming a time dependence like e~t. This leads

*O* w],
Po(7u# + uJ-

ROpO 8P
& +Vl)z-)’ —— . —

& fi8z az’
(d)

where, as before, V1~ = ~[U~z], R = F[pl], and P = ~~l].
We ddne an acceleration go s -(1/po)~/~z, and we use Eq. (23) to eliminate

R= –(l/yjV1x~po/~z in Eq. (*d). Then solving Eq. (*d) for 3P/~z i-dts in

(*e)

Finally, we use Eq. (26) to eliminate P in terms of dV1,/~z, and kd upon multiplying
by -k2/7

Equation (*f) is analogous to Eq. (27) in the classical Rayleigh-Taylor analysis, but
contains two additional terms on the right-hand side, proportional to the zeroth-order
velocity and its z-gradient. Again, we use this equation to derive a jump condition at the
interface by integrating it over an infinitesimal element –c < z s e, which includes the
interface. We shall ihd as usual that only the terms in Eq. ( ●f ) which are delta functions
produce any finite contribution to the integral in the limit that c ~ O. These are the
second and third terms on the right-hand side, and the term ou the left-hand side; pO, UOZ,
and tW1’ /t3z are discontimmus at the interface, so their z-derivatives are delta functions.
However, 8V1 ‘/az itself is not a delta function, so the fourth term on the right-hand side
produces a vanishing integral. So does the first term on the right-hand side, aa we saw in

U. (**b) in the claasical Rayleigh-lfhylor an~ysis.
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Integmting Eq. (*f) requires evaluating only one new term, since two of the non-
wanishing terms were integrated earlier, as 11 in Eq. (**a) and 19 in Eq. (**c). The new
integral i8

where W is the value of V1z at z = O. The integral is not so straightforward to evaluate

as those encountered earlier, since the integrand is the product of a step function and a
delta function. However, let us suppose th~.t ~ and U. vary linearly over the ir&itesimal
region -c s z < c, so that as c ~ O they aprroach step fknctions and ~oz/~z approaches
a delta function. Then the integral is trivial, with the result

14 = k2~ ‘“” + ‘ab’Vabl,
72

that -

where pun and ~~bl are the densities in the unablated layer and in the ablated region,
respectively.

Thus the result of integrating Eq. (*f) is

IL = 13+14,

or
k2Wgo k2W pun + pablvabl,

–kw(pwn + Pabl) = ‘~(Pmn - Pabl) + ~
2

which can be simplified as
kvab[

-y2+ ~T – kgoA = O,

where
~ = (p.. - Pabl)

- (#%n + Pabl)”

The solution to the quadratic equation (*g) for ~ is

kvabl ● I( )
kvabl’ 2

7 = —.—~ T
+ kgoA,

The positive root ~ay be written, when /ZZA >> kvabl/4,

- kvab~ 1

()

kvabl 2
7=KA-~+— —

243 4
— ...

(*g)

(*h)

,

The effect of ablation is thus to reduce the growth rate of the instability.
Although this expression is only approximate, having been derived under some rather

severe restrictions (no spatial extent of the region of acceleration, no modification of the

continuity equation for finite zwroth-order velocity, no heating or energy exchange), it
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nevwtheless reaernbla relations obtained &m more ac.cumte treatments. For example,
the Taka6e mlaiion (Takabe et al. 1985)

(*i)

is found to describe detailed numerical solutions of a linear perturbation analysis of
ablation-surface instability y that includes heating and energy exchange in the ilow. The
analysis results in a system of five coupled ordinarg~ differential equatiom for fit-order
variations in five quantities density, normal velocit y, tangential velocit y, temperature, and
no~mal heat flux. In general, the solutions are well fit using a = 0.9 =d 3 < /3 < 4. In
Eq. (*i), the ablation velocity v. denotes the mass ablation rate divided by the density at
the ablation surface, whereas V.bl in Eq. (*h) represents the terminal velocity reached by
ablating material far from the ablation surface. We expect Vebl >> u~, which accounts in
part for the different mei%cients of kw.bf and &u. in ecp. (*h) and (*i).

C. Bubble rise in late-stage Rayleigh-Thylor instability

The amplitude of a sinusoidal perturbation increases uponentia,lly with time in the
early stage of Rayleigh-~ylor instability, as we saw earlier in the linear analysis. Eventu-
ally the growth rate decreases, when the amplitude becomes about 10% of the wavelength
A = 2n/k. At this point, higher harmonics of the original sinusoid appear. The perturbed
interface is then no longer sinusoid~ but assumes a ‘bubble+ udspike~ ccm&guration, in
which rising, broader bubbles alternate with falling, narrower spikes, The relative width
of bubbles and spikes depends on the density ratio of the two fluids, or, equiwdently, on
the Atwood number A. When A s 1, the bubbles are much broader than the spikes. But
when A = 0, that is, the fluids have nearly the same density, there is little distinction
between the behavior of bubbles and spikes, and they have nearly the same width.

Eventually the flow reaches a regime which is nearly steady-state, if the initial pertur-
bation was a pure sinusoid The bubbles rise at constant velocity. If A = 1, we can carry
out an approximate analysis of the resulting flow pattern (following Davies and Taylor
1950, incorporating a suggestion by Layzer 1955) and determine the velocity of the tip of
the bubble. Layzer considers the entire history of the instability, from the initial linear
stage to the asymptotic steady state, but we focus only on the latter here.

To do so, we employ the concept of potential flow. The law of conaewation of cimda-
tion implies that for isentropic flows (that is, flows which are not dissipating or exhanging
energy or subjected to shock waves), the curl of the velocity field, V x v (called the vortic-
ity) is constant along particle trajectories. In particular, if the vorticity vanishes anywhere
on a fluid trajectory, it vanishes ever~here on the trajectory. In the case of an array of
bubbles rising into initially motionless fluid, the vorticity of the fluid at a large distance
above the bubbles is zero because the fluid is at rest. Even after the fluid begins to fall past
the bubbles, its vorticity remains zero, by the law of consm vation of circulation, Like any
vector field whose curl is zero, the velocity can be therefore be expressed as the gradient

of some scalar, by virtue of the vector identity V x (V@) = 0. This scalar is called the
velocit~ potential, and we write v = V#. This kind of flow is termed potential flow, or
irrational jiow,
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If furthermore we assume that the flow is incompressl%le, aa we did in the lineaz ,

analysis of Rayleigh-Taylor instability, we have that the velocity is divergenceless: V” v =
O. (This follows from the vanishing of the Lagrangian total derivative, F~. (11), and
the amtinuity equation, Eq. (2).) Therefore, expreming the velocity as the gradient of
the potential, we conclude that, for incompressible potential flow, the velocity potential
satiska Laplace’s equation:

V*4= o.

DA. “ - g the flow field for an array of rising bubbl~ then amounts to solving Laplace’s
equation subject to the appropriate boundary conditions.

Another useful relationship for problems of this type is given by Bernoulli’s quution.
It states that, for steady flow of an immmpremible fluid,

1
-w* + ~ + gz = constant
2

along particle trajectories. In our problem, in which A s 1, it is a reasonable approximation
to take p = constant within the low-density bubble near its tip. Since the high-density
fluid at the bubble surface must be in pressure equilibrium with the
density is constant in incompressible flow, we can assume that along
bubble

1*
-v + gz
2

= constrmt.

bubble, and since
the surface of the

(cl)

Let us consider an exactly sin woidal initial perturbation at an interface, with arbitrary
values of the wavevector components k= and kV. By appropriately rotating the mordina;e
system in the (k, ~) plane we can make the k direction coincide with the direction of the
waveve:tor k, so that ky = O and k= = k. Thus the sinusoid varies only in *, and we can
ignore the ~ direction in the following analysis.

Rom this sort of initial condition, a flow field wi~ eventually arise consisting of an
array of identicti rising bubbles (which are two-dimensional, like long tunnels, having no
variation in ~) arranged with a spatial period of J = 2m/k. The flow pattern is the same
as thet for a single bubble rising between two parallel frictionless walls located at z = + ~.
The boundary condition at the walls is that the component of the flow velocity normal to
the walls vanish there:

We now transform to the frame-of-reference rising at the same speed M the bubble.

Call this speed U; the point of this aualysis is to determine the value of U. An additional
boundary condition is that i.1 the frune of the bubble, the undisturbed fluid far above the
bubble is traveling downward at velocity

U,(2 = +W) = -u.

Solutions of Laplace’s equation are well-known from many branches of physics. For
geometries such as in our bubble problem, where the flow is two-dimensional and conihmd

13



by planar walls, it is clear that a po’atial of the form

sati&s Laplace’s equation and the boundary conditions just debed. For

n=l

Thus

as Laplace N equation requires. (Recall that for our choice of coordinate axes, &5/~ =
Pti/ap2 = 0.) Furthermore VZ = ~~/~z = O at z = +$ and UC = ~#/8z + –u FM
z 4 m, as our boundary conditions require.

The trajectory of any fluid particle in the flow field is described by the dream function
~, which is related to the velocity potential by

It is erIsy t.c vti.+fy that the function

satisfies these relationships. The stream function is constant along particle trajectories for
steady flow, so that trajectories are given implicitly by

*(z, z)= v. = constant.

At z = +w, ~(x, w) = -zU, so we oee that # is related to the distance of the trajectory

from the symmetry plane z = O at large distance above the bubble. Thus the trajectory

14



for a fluid particle that flows down the plane z = O and then along the boundary of the

bubble is given by @ = O, which implies that

is the equation of the bubble surface.
A simple approximation to the solution of this problem is obtained, following Daviea

and lbylor (1950), by keeping only the 6rst term in the sum ddning d and ~. That is,
using k = 2A/J,

4
al

= —zV - —e-k* cm kz,
k

$
al

= —ZU + ~e-kg sinkz.

Then the velocity components are

84 w

‘z=z=–rz=ale ‘kz sin kz,

Vz=q=w

8Z K = –U + ale-kzcoskz.

The surface of the bubble is given by

ekz = al sin kz

v.

The height of the apex of the bubble, at z = O, is determined by the values of U1 and V.

If we demand that the apex occur at z = O, then we must have al = U aud so the bubble
surface is given by

kx~-ks = .

sin &z
(C2)

and

To proceed with the solution, we now require that Bernoulli’s equation be satiefied
along the bubble surface, Inserting the above expressions for the velocity components into
Eq. (Cl), with al = U, leads to

Ua(e-2kx sin2 &z+ 1- 2e-kz cos &z + e-2&’ cm? &z) + 2gz = constant,

We choose the constant to be zero on the right-hand side of the equation because the apex

of the bubble is a stagnation point, with VZ = vu = O, and its height is z = 0. Thus it is
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clear km Eq. (Cl) that the constant is zero for this trajectory, Along the bubble surface,
Eq. (C2) applica, so we inmrt that condition inti Eq. (C3). The result is

or

(kz)2

Z7G -2-&-: l+*ln(*)=o

2g
u2tau–2ush2 u+sk2utau +~8h2utmuh( ~)= o, (C4)

u

where U = kz.
Now, for any particular choice of g and U, this expression can only be satiskl exactly

at a single value of z in addition to z = O. It cannot be satitied over the entiie bubble
surface. This is the result of havinq chosen the simplified potential and stream functions
with only the first term of the sum. Keeping more terms in the sum would allow a more
mmplete solution. Nevertheless we can determine a reasonably accurate value for U by
requkhg that Eq. (C4) be satisfied in a fist-order neighborhood of z = O. Accordingly
we expand the functions in Eq. (C4):

U4
~ + O[U6];sin2u=u2-—

u’
tan u ~ + CJ[U5];=u+—

sin2utanu= U3 + 0[U7];

sin u us u’
ln(— = –~ - ~ +O[u’y;

u)

u’
sin2utanuln(~) = –~ +0[u7].

So Eq. (C4) becomes

UB 2U5 2g us
U3 + —_2u3+

3
~+u3- ~~+o[u7]=o

implying that

or

This is exactly the result of Layzer (1955) for the caae of asymptotic steady-state two-
dimensiona! flow between paralle! walls. He takes aa the length scale the half-distance
between the walls a = A/2 , so that



Layzer also considers the flow of a bubble of circular crow-section, with radiua R He
obtains in this case

U s 0.5108@

Thus we = tad huger bubbles rise faster than smaller bubbles. This dependence
is opposite to that for the linear stage of the instability, in which we found that smaller
wavelengths grow faster than luger W8VdC3@hS.

D. Sat~iration and multimode interactions in intermediat-stage Rayleigh-

Ti@or instability
The linear analysis of Sec. A depends on the validity of the small-tiplituck .aasump-

tion, that is, on the extent to whkh fit-order quantities are in &t much srnd’er than
the corresponding zeroth-order quantities. However, if the exponential growth that char-
acterizes the linear stage were to persist long enough, the small-amplituck asau.mption
would eventually be violated for any initial perturbation, however small. The departure
of the instability evolution from linearity is called satumtion. We can estimate tile con-
ditions required for linearity by considering, for example, the first-or&r accekraticm of a
sinusoidal perturbation mode and its relation to the zeroth-order acceleration of gravit y g.
The z-velocity of a pure mode with wavevecfor k one. ‘ed along f cm be described by

u.(z, z,t) = W(z)e7~ ma kz,

so that the displacement of the interface (initially at z = O) is

Ir)(z, q = ~t U.(Z, o,t’)dt’= ;Vz(z,o,t).

The acceleration of the interface is

a.(z, o,t)

&
= ~vg(z, o,t) = ~zq(z,t),

Linearity requires that this acceleration be much smaller than gravity: y2rI << g. Since
the lin&r growth rate ~ = m, this is Akrj <<1. Since A Z 1, a- sufficient c&lition

. .

for linearity is simply
kq<< 1.

In terms of the wavelength of the mode, this condition is

The consequence
ponential, bu: begins

q << J/2n & 0.16A.

of saturation is that the growth of the instability is no longer ex-
to approach the constant-velocity bubble rise typical of late-stage

growth, A more stringent estimate of the requirement for linearity comes from estimating
the interface displacement at which the linear-stage interface velocitw equals the late-stage
bubble velocity. As we have just seen, the interface velocity is u,(z, 0, i) = y?, while the
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bubble velocity is

lineali~ requires
~m. Equathg these, for A = 1, gives k~ = l/@i z 0.S8, m that

(Dl)

Another consequence of the onset of nonlinearity is that separate perturbation modes
on the interface, which grow as if they are isolated during the linear stage, begin to notice
one another’s presena. This occurs because they begin to affect the zeroth-order flow field
which drives the instability; for example, a short-wavelength mode riding along on the
bubble of a long-wavelength mode experiences a different effective gravity than the initial
g, because of the additional acceleration in the long-wavelength bubble. Tlus interaction
is called mode wuplingo

Red surfaces in actual lCF experiments have structure at many scales, from millime
ters to angstroms. The structure arises for a variety of reasons, including the inherent,
heterogeneous crystalline structure of materials, as well as marks left by fabrication and
machining. When Fourier analyzed, the surfaces typically have a full spectrum, with spec-
tral power at all modes up to some very high wavenumber. An important question arises
cmmxning how saturation occurs in a full spectrum, as opposed to the cnae of a pure mode
just discussed. This is because a group of modes with nearly equal wave vectors can com-
bine constmctively over a region of the surface, producing a structure whose net amplitude
is rauch larger than the modes’ individual amplitudes, It seems clear that the saturation of
this structure should occur when its net amplitude is about 10% of its eikctive wavelength,
as discussed above for pure sinusoids. This means that tue individual modes s7.mming to
produce this structure must saturate a good deal earlier than we would expect if they were
isolated from other modes and individually obeying the inequality (D I ). A prescription for
determining when modes saturate in a full spectrum was developed by Haan (1989) and is
known as the Haan saturation model. It expresses a type of modal interaction which is a
short-range interaction in wavevector space, involving as it does only neighbming modes
which stay in phaae over a large enough region to form a structure of significantly higher

amplitude thsn any of the individual modes.

The cmsic conceptual point of the Haan model is that a pure mode cannot be distin-
guished horn a superposition of several modes except by lneasurements over a sufEciently
large spatial region. The region must be large enough that the individual modes in the
superposition have gone out of phme. In regions smaller than this, the saturation of the
multimode superposition must occur in the same way aa the saturation of the pure mode.
For example, consider two modes of nearly equal wavelength (A and A(1 + c, for example),
qual amplitudes, and parallel wavevectors. The modes stay in phuse for a large distance
because their wavelengths are so nearly equal, but eventually, over a distance A/2c, the
modes become exactly out of phsae. Where they are in phsse, they combine to create a net
perturbation whose amplitude is twice the individual amplitudes am+ whose wavelength is
approximately A. When the net perturbation saturates, the two superposed modes clearly

have amplitudes which are about half the value of the single-mode saturation amplitude,
yet they must individually saturate.
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