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Hydrodynamic Instabilities in Inertial Fusion

Nelson M. Hoffman

Introduction and Survey

An ideal inertial-confinement-fusion (ICF) implosicn is exactly spherically symmetric.
If the implosion departs from spherical symmetry, the imploding capsule’s performance
is degraded in several ways: the conversion of the imploding shell’s kinetic energy to the
fuel's internal energy may be less efficient, the compression of the fuel to high density
may be less extreme, and the surface area through which the fuel luses energy by thermal
conduction may be increased. In severe cases, asymmetry can lead to the breakup of
the imploding shell (at larger spatial scales) or the creation of hydrodynamic turbulence
(at smaller spatial scales). Turbulence in turn may have a number of deleterious effects,
involving the turbulent transport of mass, momentum, and energy in ways that corrupt
the highly organized evolving structure of the imploding capsule.

ICF implosions, whether real or ideal, are subject to a variety of hydrodynamic insta-
bilities that amplify smzall departures from spherical symmetry. Instabilities can cause a
disturbance to grow from an amplitude which may at first seem insignificant to a level that
can seriously disrupt the flow, as described above. Instabilities do not themselves generaie
the initial asymmetric disturbance, or “seed”, from which the final disruption grows. In-
stead, the seeds arise from limitations in our ability to fabricate perfectly spherical shells, to
generate perfectly uniform laser beams, or to create perfectly symmetric thermal radiation
fields in hohlraums. Small perturbations of a capsule’s surface caused by the roughness of
the material’s crystal structure, or by machining marks from the fabrication process, are
examples or instability seeds. Other examples inciude the interference pattern in a focused
laser spot, which can imprint disturbances on an initially smooth surface irradiated by
the laser. Thus the seeds simply refiect the inevitable deviation of real-world experiments
from the idealized constructs of theory. Instabilities then cause these seeds to grow to a
size that may have serious consequences for an ICF implosion.

Hydrodynamic instabilities are straightforward consequences of the conservation equa-
tions of hydrodynamics. They are in fact nothing more than solutions to these equations
for specific initial and boundary conditions corresponding to somewhat simplified versions
of real flow fields. For example, the Rayleigh-Taylor instability, which we shall encounter
often in ICF in a generalized form, arises in the case of two initially motionless incompress-
ible fluid layers of unequal density, where the denser fluid is supported atop the less dense
fluid in a gravitational field. If the interface, or contact surface, between the layers is dis-
turbed so as not to be «xactly horizontal, then the Rayleigh-Taylor instability ensues. The
interface disturbance, which is the initial seed in this case, grows until eventually bubbles
of the less dense fluid ascend through the denser fluid while jets or “spikes” of the denser
fluid plunge downward through the less dense fluid. The Rayleigh-Taylor instability is
never encountered in this precise form in ICF, because gravitation plays no role in an ICF
implesion; the time and space scales of ICF are simply too small. However, the accelerat-
ing and decelerating forces produced by pressure gradients ecting on the shell of an ICF
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caprule are effectively analogous to gravity. Thus hydrodynamic phenomena arisc which
are for all practical purposes equivalent to the Rayleigh-Taylor instability, appropriately
generalized for compressible flow fields which are converging or diverging, which do not
necessarily have sharp boundaries separating duids of different density, and in which the
acceleration force is not necessarily constant in time.

A related instability is the ablation-surface instability, sometiines called “Rayleigh-
Taylor instability at an ablation surface.” This occurs when intense radiation, either laser
or thermal, heats a material interface and abiates it. The ablated material flows away from
the interface, creating a high-pressure, low-density corona which accelerates the unablated
material. The density decrease from unablated to ablited material corresponds to the
contact surface between the two fluids in the incompressible Rayleigh-Taylor instability,
while the pressure increase from unablated to ablated material gives an acceleration force.

Other instabilities of particular consequer.ce for ICF are the Richtmyer-Mesbkov in-
stability and the Kelvin-Helmholtz instability. The Richtmyer-Meshkov instability occurs
when a shock wave crosses the interface between two fluids of unequal density, Jcaveling in
a direction normal to the interface. This can be viewed as the limiting case of a Rayleigh-
Taylor instability in which gravity acts for an infinitesimally short duration on the fluids,
imparting an impulsive acceleration to the interface and generatinz fluid motions that
persist even in the absence of gravity. The Kelvin-Helmholtz instability arises when the
two fluids are initally in motion, and there is a variation across the interface of the veloc-
ity component parallel to the interface. Such a gradient in the parallel velocity, referred
to as “velocity shear”, is unstable if 't is sufficiently severe, and leads to the creation of
vortices which entrain the two fluids in a characteristic whirling rotational motion. The
Kelvin-Helmholtz instability can arise along the interface between the ascending bubbles
and descending spikes of late-stage Rayleigh-Taylor instability, where the shear due to the
differential motion of these structures can be significant. Other circumstances giving rise
to Kelvin-Helmholtz instability include the case of a shock wave crossing an interface in a
direction not precisely normal to the interface. Shear is generated by the deviation from
strict normality, so that both Kelvin-Helmholtz and Richtmyer-Meshkov instakility can
occur in this situation.

The occurrence of instabilities in an ICF implosion
Ablation-surface instability during ablative acceleration
Richtmyer-Meshkov, Kelvin-Helmholtz during shock emergence
Rayleigh-Taylor during deceleration

A. Linear analysis of Rayleigh-Taylor Instability

It is worthwhile to derive from basic principles the small-amplitude behavior of the
Rayleigh-Taylor instability, both because we shall thereby discover some of the properties
of the instability and because the exercise will serve as an example of the technique of
linear perturbation analysis, widely used in instability studies. Our starting point is the
system of equations describing the hydrodynamic motion of an ideal fluid (that is, a fluid
in which there is no energy dissipation or heat exchange), known as the Euler equations:
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Op

2+ (pv) =0, (1)
P+ p(v- V)V =~Vp+ g, @)

Equation (1) i3 called the continuity equation and Eq. (2) is called the equation of motion
or momentum equation. Here p, v = vyX+vy ¥ + v, f, and p denote respectively the density,
velocity, and pressure of the fluid. An external force, such as gravity, acting on the fluid
is represented by g = g% + g,§ + g£. In the particular example of Rayleigh-Taylor
instubility we shall consider, the fluids meet at a horizontal interface snd are initially at
rest. We take the normal to the interface as the direction £ , so that gravity acis along #:
g = ks%. Since gravity acts downward, g; < 0 and g = —|g.|2. All physical quantities are
initially uniform throughout both fluids, away from the irterface.

To investigate the stability of hydrodynamic motion, we ask how the motion responds
to a small fluctuation in the value of any of the flow variables appearing in the Euler
equations. If the fluctuation grows in amplitude so that the flow never re‘urns to its
initial state, we say that the flow is unstable with respect to fluctuations of that type.
Accordingly, we replace the variables in Eqs. (1) and (2) as follows:

P=P0+Plal
vV =vg+ Vv,
P=po +p1.

The qu ntities with subscripts “0” represent the unperturbed, or “zeroth-order” mo-
tion of the fluid, and thus must themselves satisfy Egs. (1) and (2). The quantities with
subscripts “1” represent a small perturbation about the zeroth-order quantities; that is,
p1 << po, V1 << Vg, and p; << pg. Substituting these expressions into Egs. (1) and (2)
gives

s |
Heo k1) 1 9. [(po + oa)(ve +v)) = 0,
a(Vo + Vl)
(Po + p1)=——5—+ (po + 1)[(Vo + V1) - V](Vo + V1) = =V(po + p1) + (po + £1)8,
or
)
ﬁ +-aapTl+V-(po\’o+PlV0 + povi + p1v1) =0, (3)

ov Bv ov ov
Po &0 + ato+Po 6tl +P13tl+

Po(vo - Vvo+vi:Vvo+vyg-Vvi+v,-Vvi)4+p1(Vo - Vv +vi-Vvp+ v Vv +v;: Vv ) =
—Vpo = Vp1 + pog + 18- ' (4)
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The fact that the zeroth-order quantities satisfy Eqs. (1) and (2) means

220 V- (povo) =0, ()
Bvy
pogr + po(vo - V)vo = ~Vpp + pog. (6)

We can subtract the zeroth-order equations Eqs. (5) and (6) from Eqs. (3) and (4).
This amounts to dropping all terms in Eqs. (3) and (4) which contain no appearances
of the subscript “1”. Furthermore, we can omit terms in Eqs. (3) and (4) which contain
products of first-order juantities, since they are very small in comparison to terms which
are linear in first-order quantities. This process of omission of quadratic quantities, by
which we obtain a system of linear partial differential equations, is called linearization
of the perturbed equations. Linearization is valid only if the perturbations are small. It
means in effect that we drop all terms in Eqs. (3) and (4) in which the subscript “1”
appears twice. The result of linearizing and of subtracting the zeroth-order equations is

that Eqs. (3) and (4) become

0
-;—t‘- + V- (p1vo -+ pov1) =0, ()

ov ov
Pl_a‘£ + POFl +po(V1-VVa +vo - Vi) +pi(vo- Vo) =-Vp + o185 (8)

We now restrict our attention to the Rayleigh-Taylor instability in particular. For the
problem as it was posed earlier, the fluids are initially at rest. This means that vo = 0, so
that Eqs. (7) and (8) become

i)

=+ (pv1) =0, €)
ov

Pow1 = ~Vp1 + p18. (10)

We now appeal to the fact that, for many situations of interest in ICF, unstable flow
occurs at velocities much smaller than the local scund speed. This has the effect that
accelerations in the flow are not strong enough to change the density of a fluid element
significantly, so the fluid moves without compressing or expanding. In such a situation we
call the flow incompressible. Provided that we are well away from shock waves or centers
of convergence, the assumption of incompressible flow is often valid. To say that fuid
elements move without changing density is to say that the Lagrangian total derivative of
density is zero, that is,

dp

at

Applying this equation to our instability analysis, we substitute the perturbed expres-
sions p = pg + p; and v = vy + v, into Eq. (11), and recall that both v¢ and the time

+v.Vp=0. (11)
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derivative of py vanish, since they describe the static initial state. We also linearize the
result, dropping nonlinear terms in the first-order quantities, as before. The result is that
Eq. (11) becomes

8py

T‘t—'l'vl-Vpo:O. (12)

Comparing this equation to Eq. (9), which we write in expanded form as

)
-ﬁ+pov-v,+v,-vpo=o, . ) (13)

we see that subtracting Eq. (12) from Eq. (13) yields

V. vy = 0. (14)

This is a consequence of the sssumption of incompressible flow. We can use either Eq.
(12) or Eq. (14) to replace the linearized continuity equation Eq. 9 under this assumption.

To proceed, we write out the ve.- .r equations (10) and (12) in component form. The
Linearized momentum equation (10) b2corres

Ovy; _ op1

P T g TP
Ov Op

Po 8:' = -Wl + P19y,
Ovy; _ apl

PO = E'*'Plgu

while the linearized inccmpressible continuity equation (12) beconies

dp: dpo 8po Opy
o Ty Ty, T =0

Because gravity acts only in the Z direction, g; = g, = 0. Furthermore, since pg is uniform
throughout each medium, with its only variatior occurring across the horizontal interface,
we have 8po /0 = 8py/0y = 0, while Opy/0z is non-zero, but only at the interface. Thus

the lincarized incompressible comporent equations may be written, using ¢ = |g;| = —9¢,,
Po r');;, = —%’;l, (15)

Pt = -2, (16)

Po%" = —% - Mg, an

Q;Tl + v;,% = 0. (18)
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It will also be useful to have Eq. (14), which expresses the nondivergence of the first-order
flow, in component form:
avlz 8”1. G'Uls
z

3z Ty 'O
The next step in our analysis is to carry out a Fourier transformation of the system o1
equations (15) - (19). This is a powerful technique for the solution of differential equations,

because of a useful property of Fourier transforms: if F[f(t)] is the Fourier transform of
the function f(t) with respect to the independent variable t, then the Fourier transform of

the derivative df/dt is
Fldf/dt] = isF[f(t)),

where s is the trans{orm variable. Thus a differential operator acting on a physical quan-
tity becomes simply a product of the corresponding transform variable and the Fourier
transform of that quantity. Accordingly we define the following two-dimensional Fourier
transforms with respect to z and y:

=0. (19)

+

Vl:(k:’ k'az7t) = Fz'[vlt(r’ v, Z,t)]

1 +o00 400 )
= or dz-/ dy vll(ziyi z’t)' (k'z+k")1
27 J o --e0

Viy(ks, ky, 2,t) = Fui”u(-”’ ¥, 2,t)],
Viz(ks, ky, 2,t) = Frylvia(z, 5 2,t)),
P(ke,ky, 2,t) = Fey[pa(2,,2, )],
R(ks, ky, 2,t) = Fgylpr(z,y, 2, ).

We do not transform with respect to z, because the £ direction does not share the symmetry
of the other two directions; the linearized component equations (15)-(19) are invariant
under the interchange of z and y, and it will turn out that solutions are waves in the (z,y)
plane. Furthermore, zeroth-order quantities such as py are not functions of z and y, which
simplifies the Fourier integrals. The transform variables k. and k, are called the % and ¥

components, respectively, of the wavevector k, whose magnitude k = \/ki + k2 is called
tke wavenumter.
Additionally. we shall seek solutions whose time dependence is proportional to e'.

This is a standerd procedure when Fourier transforming differential equations. If, for
example, we suppose that

Vlz(kt’ k'yzvt) = f’],(k:, k.,Z)CYl,

then
'a_g:—' = 7‘71:6-" = 7Vl:-

Thus, again, a derivative can be replaced by a product. The variable v is called the
frequency.



Performing the Fourier transforms of the component equations (15)-(19), and making
the assumption that the time dependence of the solution is gisen by e, where 4 may be

e function of k. and k,, results in

YPoVie = —ik. P,
TPoV1y = ——ik.P,

oP
1poVis = % gR,

dpo
7R+ Vll_az_ = 0’

Vi,

= 0.

The solution of the equations (20) - (24) is now straightforvard Multiply Eq.

by ik; and multiply Eq. (21) by ik,:
17pok:Vie = ka:2P:
ivpok, Vi, = k2 .

Add these equations:
i7po(kcViz + kyViy) = (k22 + K, 2)P.

From Eq. (24), solve for k. Vi, + k, V1, = i0V;,/3z and substitate in Eq. (25):

(20)
(21)

(22)
(23)

(24)
(20)

(25)

(26)

using k* = kZ + k2, the square of the wavenumber. Next we <liminate R between Eqs.

(22) and (23). Equaticn (23) implies

1 apo
R=-=v,,2
7Vl 0z

which we may substitute into Eq. (22) to obtain

oP _ 0po
57 = "1PoViz + Vu ER
Finally, solving for P from Eq. (26) and insertmg here we find
9, —7po 3Vu 8po
a—;( P ) = -7poV1i: + = Vu 5z
or
3V1: _ g aPo
(PO a ) - 0‘,11(1 - P az

7
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Everywhere except at the interface, pp is constant, so its z-derivative vanishes and py
may be canceled from Fa. (27), leaving

Fv,
0z2

The general solution to this equation is

= kV,,.

Vi = Aet?s 4 Be~ b,

TLe vertical velocity should vanish at large distances from the interface, and so we
choose u solution with A # 0,8 =0 for z < 0 and with A = 0,B # 0 for z > 0. In order
that V}, be continuous across the interface, we select

Wettr 2 <0
Vll = -~kz ?
We ™ *,2>0

where W = Vj,(z = 0) is the value at the interface.

The derivative 3V;,/8z is not continuous, however. It has the value kW immediately
below the interface and ~ kW immediately abov>. Equation (27) expresses the relationship
between the discontinuity in 6V),/9z and the discontinuity in density. We can use this
relationship, which is essentially a boundary condition at the interface, to determine the
frequency v in terms of the gravity, the wavevector, and the density jump.

To do so, we integrate Eq. (27) over an infinitesimal element of z that includes the
interface z = 0. The derivative of a quantity, when integrated, then gives simply the
change in {he value of that quantity across the interface. Thus the left-hand side of Eq.
(27) integretes to

¢ Vi, Vi |
az(Po )z = =52 = —po(z > O)kW — po(z < Ok W

= —-kW(Pabon + Pbelow) = Il’

where pgpove = po(z > 0) is the density in the upper fluid and ppeiow = po(z < 0) is the
density ‘n the lowsr fluid. The first term on the right-hand side of Eq. (27) gives, upon
integration,

/ kzPOVl.ldz = "72“’(ﬂubowee + Pbdowf) =1

The second term on the right-hand side of Eq. (27) gives

¢ dpo k*Wg [ 8po k2Wg ¢
- k% po Wi g JPoy, =229 =
e P 02 v Joe 0z B S
k2Wg

= _7 (Paboue pbelow) = Is.



In the limit that ¢ goes to zero, Iz vanishes, because it is proportional to e. On the
other hand, I; and I, are finite; they are, in effect, integrals of delta functions. Thus we
must have I; = I; or

Bw
_'kW(PGMn + Pklo-) = -_;z—g(Pchn - Pklu)-
Solving for v, we obtain
2 _ % (Padove — Pulo-)-
K g(Pllou + Pm.-)
Define a dimensionless number A, called the Atwood number:

A= (Pclon - Pklow).
(P.hn + Pbclou)

Then 42 = kgA. Since solutions depend on time as e, we have, for example,
Wik, ky)ettse, 2 <0
= { W(k,, ky)e ke, 2> 0 } '
If pabove > Phelow, then A is positive, the interface is unstable, and the perturbation grows

exponentially with growth rate v = /kgA. If, on the other hand, petove < Phetaw, then A
is negative, v is imaginary, and the interface oscillates with frequency Im(v) = /kgA.

B. Ablation-Surface Instability

The ablation-surface instability occurs when a material layer is rapidly heated by some
energy-deposition process and ablates. If the spatial extent of the energy-deposition region
is small with respect to the depth of the layer, then a high-pressure low-density region forms
adjacent to the layer, which accelerates the layer. The low-density region is composed of
heated ablaling material expanding away from the layer’s surface. The acceleration of the
high-density layer by the low-density ablated material is analogous to the support of a
high-density fluid by a low-density fluid in a gravitational fizld, so an instabi):ly arises.
This ablation-surface instability is much like the classical Rayleigh-Taylor instability, just
discussed, but differs because of the flow of material out of the high-density layer, across
the ablation surface, and into the low-density ablated region. Furihermore, gravity plays
no role.

If we approximate the energy-deposition region as a discontinuity, we can make a rough
estimate (following Gamaly 1993) of the effect of ablation on the growth of perturbations
by repeating the Rayleigh-Taylor analysis with a simple change: because of the ablation
flow, we permit a velocity discontinuity at the interface as well as a density discontinuity.
This means that the zeroth-order state is not static, so that we cannot sel vy = 0 in our
linear perturbation analysis.

We consider a reference frame moving with the layer. In this frame, the layer is at
rest, and the ablating material moves in the —% direction with velocity vgs:. Thus

- —vapiZ,2 <0
0= 0,z>0]"



Rewriting Eq. (8), omitting gravity, and keeping terms coantaining vo gives
po%l- +P|(% +vp- VVo) +F0(V| Vvo+vp- VV|) = —Vp,. (td)

Rewriting Eq. (6) and omitting gravity gives

5% i ve-Vve = — V. (+3)
ot »0

We may substitute this expression for the total Lagrangian derivative of v, into Eq. (*a)
and rearrange terms to obtain

ov
Pu('ﬁl +v)-Vve+vp:-Vvy) = %:’VPD - Vp. (*c)

Just as in the classical Rayleigh-Taylor analysis, we take the two-dimensional Fourier
transform of the z-component of Eq. (*c), assuming a time dependence like e?*. This leads

to
avo: aVl: —_ Rapo oP
Po(‘YV:.+Vu—az—+vOzE-)~ p. Dz - 0z (‘d)

where, as before, V;, = F[v,,], R = Fp,], and P = F[p,].
We define an acceleration g9 = —(1/po)8py/0z, and we use Eq. (23) to eliminate
R = —(1/9)V1:0p0/8z in Eq. (*d). Then solving Eq. (*d) for IP/3z results in

apP (i) Ovo, W,
B - -7poV1: + %Vug?' - PoVn—a—z— ~ Povo: 8: . (ve)

Finally, we use Eq. (26) to eliminate P in terms of 8V;,/0z, and find upon multiplying
by —k?/y

a a‘/], 12 k2 apo k’ avo, k2 a‘,];
52-(,00 % )=k*poV1;: — gon—’_;VuEz— + —‘y-PoVuW + jy-Povoz el (*f)

Equation (*f) is analogous to Eq: (27) in the classical Rayleigh-Taylor analysis, but
contains two additional terms on the right-hand side, proportional to the zeroth-order
velocity and its z-gradient. Again, we use this equation to derive a jump condition at the
interface by integrating it over an infinitesimal element —e < z < ¢, which includes the
interface. We shall find as usual that only the terms in Eq. (*f) which are delta functions
produce any finite contribution to the integral in the limit that ¢ — 0. These are the
second and third terms on the right-hand side, and the term ou the left-hand side; po, vo.,
and 8V;,/0z are discontinuous at the interface, so their z-derivatives are delta functions.
However, 8V, /08z itself is not a delta function, so the fourth term on the right-hand side
produces a vanishing integral. So does the first term on the right-hand side, as we saw in
Eq. (**b) in the classical Rayleigh-Taylor analysis.
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Integrating Eq. (*f) requires evaluating only one new term, since two of the non-
vanishing terms were integrated earlier, as I; in Eq. (**a) and I3 in Eq. (**c). The new

integral is
¢ kz avo‘ 2W ¢ avo, -
i i B

where W is the value of Vy,; at z = 0. The integral is not so straightforward to evaluate
as those encourtered earlier, since the integrand is the product of a step function and a
delta function. However, let us suppose thert py and vy vary linearly over the infinitesimal
region —¢ < z < ¢, 8o that as ¢ — 0 they approach step functions and dvy, /02 approaches
a delta function. Then the integral is trivial, with the result that . _

Il = kzz—P-" tPaN ably
where p,, and p.s are the densities in the unablated layer and in the ablated region,
respectively.

Thus the result of integrating Eq. (*f) is

L=5L+1I,,
o 2w 2w
k n+
—kW(Pun + Pabl) = - 7290 (Pun - Pabl) + i 2 Pabl Vabl,
which can be simplified as
kv .
v+ T‘”‘r — kgoA = 0, (*9)

where
A = (Pun - Pablz.
(Pun + pasi

The solution to the quadratic equation (*g) for v is

_ kvapi kvasi
v=— 4,:*:\/( 2 ) + kgoA.

The positive root ' aay be written, when \/kgoA >> kvan/4,

- kvgy; 1 kvasr ) 2
= VkgoA - —— + (—“ - .. h
The effect of ablation is thus to reduce the growth rate of the instability.

Although this expression is only approximate, having been derived under some rather
severe restrictions (no spatial extent of the region of acceleration, no modification of the
continuity equation for finite zeroth-order velocity, no heating or energy exchange), it
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nevertheless resembles relations obtained from more accurate treatments. For example,
the Takabe relation (Takahe et al. 1985)

7 = a\/kgo — Bkv, (+i)

is found to describe detailed numerical solutions of a linear perturbation analysis of
ablation-surface instability that includes heating and energy exchange in the dow. The
analysis results in a system of five coupled ordinar’ differential equations for first-order
variations in five quantities: density, normal velocity, tangential velo-ity, temperature, and
noimal heat flux. In general, the solutions are well fit usinga =09 ard 3 < 8 < 4. In
Eq. (*i), the ablation velocity v, denotes the mass ablation rate divided by the density at
the ablation surface, whereas v,y in Eq. (*h) represents the terminal velocity reached by
ablating material far from the ablation surface. We expect vgp1 >> v,, which accounts in
part for the different coefficients of kvgy and kv, in eqs. (*h) and (*i).

C. Bubble rise in late-stage Rayleigh-Taylor instability

The amplitude of a sinusoidal perturbation increases exponentially with time in the
early stage of Rayleigh-Taylor instability, as we saw earlier in the linear analysis. Eventu-
ally the growth rate decreases, when the amplitude becomes about 10% of the wavelength
A = 2n/k. At this point, higher harmonics of the original sinusoid appear. The perturbed
interface is then no longer sinusoidal, but assumes a “bubble-and-spike” configuration, in
which rising, broader bubbles alternate with falling, narrower spikes. The relative width
of bubbles and spikes depends on the density ratio of the two fluids, or, equivalently, on
the Atwood number A. When A ~ 1, the bubbles are much broader than the spikes. But
when A ~ 0, that is, the fluids have nearly the same density, there is little distinction
between the behavior of bubbles and spikes, and they have nearly the same width.

Eventually the flow reaches a regime which is nearly steady-state, if the initial pertur-
bation was a pure sinusoid. The bubbles rise at constant velocity. If A ~ 1, we can carry
out an approximate analysis of the resulting flow pattern (following Davies and Taylor
1950, incorporating a suggestion by Layzer 1955) and determine the velocity of the tip of
the bubble. Layzer considers the entire history of the instability, from the initial linear
stage to the asymptotic steady state, but we focus only on the latter here.

To do so, we employ the concept of potential flow. The law of conservation of circula-
tion implies that for isentropic Jows (that is, flows which are not dissipating or exchanging
energy or subjected to shock waves), the curl of the velocity field, V x v (called the vortic-
ity) is constant along particle trajectories. In particular, if the vorticity vanishes anywhere
on a fluid trajectory, it vanishes everywhere on the trajectory. In the case of an array of
bubbles rising into initially motionless fluid, the vorticity of the fluid at a large distance
above the bubbles is zero because the fluid is at rest. Even after the fluid begins to fall past
the bubbles, its vorticity remains zero, by the law of consei vation of circulation. Like any
vector field whose curl is zero, the velocity can be therefore be expressed as the gradient
of some scalar, by virtue of the vector identity V x (V@) = 0. This scalar is called the
velocity potential, and we write v = V¢. This kind of flow is termed potential flow, or
irrotational flow.
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If furthermore we assume that the flow is incompressible, as we did in the linear
analysis of Rayleigh-Taylor instability, we have that the velocity is divergenceless: V-v =
0. (This follows from the vanishing of the Lagrangian total derivative, Fq. (11), and
the continuity equation, Eq. (2).) Therefore, expressing the velocity as the gradient of
the potential, we conclude that, for incompressible potential flow, the velocity potential
satisfies Laplace’s equation:

Vig =0.

Determining the flow field for an array of rising bubbl-=s then amounts to solving Laplace’s
equation subject to the appropriate boundary conditions.

Another useful relationship for problems of this iype is given by Bernoulli’s equation.
It states that, for steady flow of an iacompressible fuid,

-;-vz + -E 4+ gz = constant

along particle trajectories. In our problem, in which A =~ 1, it is a reasonable approximation
to take p = constant within the low-density bubble near its tip. Since the high-density
fluid at the bubble surface must be in pressure equilibrium with the bubble, and since

density is constant in incompressible flow, we can assume that along the surface of the
bubble

%v’ + gz = constant. (C1)

Let us consider an exactly sin'1soidal initial perturbatior at an interface, with arbitrary
values of the wavevector components k; and k,. By appropriately rotating the coordina‘e
system in the (X,¥) plane we can make the X direction coincide with the direction of the
waveve:ztor k, so that k, = 0 and k; = k. Thus the sinusoid varies only in %, and we can
ignore the § direction in the following analysis.

From this sort of initial condition, a flow field wili eventually arise consisting of an
array of identicai rising bubbles (which are two-dimensional, like long tunuels, having no
variation in §) arranged with a spatial period of A = 27 /k. The flow pattern is the same
as that for a single bubble rising between two parallel frictionless walls located at z = :i:-'%.
The boundary condition at the walls is that the component of the flow velocity normal to
the walls vanish there:

: A
ve(z = ii) = (.

We now transform to the frame-of-reference rising at the same speed as the bubble.
Call this speed U; the point of this aualysis is to determine the value of U. An additional
boundary condition is that i. the frame of the bubble, the undisturbed fluid far atiove the
bubble is traveleing downward at velocity

v,(z = 400) = -U.

Solutions of Laplace’s equation are well-known from many branches of physics. For
geometries such as in our hubble problem, where the flow is two-dimensional and confined

13



by planar walls, it is clear that a pclential of the form

Aa, _ 2nnz

¢(z’z) = -2l - 2 2—n;¢ o COB( 3 )

satisfies Laplace’s equation and the boundary conditions just defined. For

Ea,. -"'1"' sm(2n1rz)

n=l

8 i 2
5% ~=U+ Y ane™ 3" cos( ";");

nx=]

2n~w _ 2nnz
Z ant cos( A );

6::2 opeet
&¢ > 2n1r .- onrz
022 __z_:l A (—_)
Thus
P Fo_,
9z | 922

as Laplace's equation requires. (Recall that for our choice of coordinate axes, 86/8y =
82¢/0y* = 9.) Furthermore v, = 8¢/8z = 0 at z = +4 and v, = 84/0z — U as
z — 00, as our boundary conditions require.

The trajectory of any fluid particle in the flow field is described by the stream function
¥, which is related to the velocity potential by

o _9¢
gz 0z’
o _ -5
0z Or
It is ensy to verify that the function
¥(z,2) = —2U + }: '\‘"‘ e sm(z"")
n-l

satisfies these relationships. The stream function is constant along particle trajectories for
steady flow, so that trajectories are given implicitly by

Y(z,z) = ¢ = constant.

At z = 400, Y(z,00) = —zU, so we see that 1 is related to the distance of the trajectory
from the symmetry plane z = 0 at large distance above the bubble. Thus the trajectory
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for a fluid particle that flows down the plane z = 0 and then along the boundary of the
bubble is given by ¢ = 0, which implies that

1 < Aa, —inu 2nxzx
22 onn X

)=1

is the equation of the bubble surface.

A simple anproximation to the solution of this problem is obtained, following Davies
and Taylor (1950), by keeping only the first term in the sum defining ¢ and . That is,
using k = 22/ A,

¢=—z2U - —‘ e~** cos kz,

v=—zU+ 81 ks ginkz.

k
Then the vzlocity components are
= % = —g—f = aje"*sin kz,
3 = g—f = % =—U+G]C-k1008k$

The surface of the bubble is given by

ks G18inkz

Ukz

The height of the apex of the bubble, at z = 0, is determined by the values of ¢; and U.
If we demand that the apex occur at z = 0, then we must have a; = U aud so the bubble
surface is given by

kz
- —ks =
¢ ginkz’ (€2)
and
= _ln(sm kz y

To proceed with the solution, we now require that Bernoulli’s equation be satisfied

along the bubble surface. Inserting the above expressions for the velocity components into
Eq. (C1), with @y = U, leeds to

U(e~***sin kz + 1 — 2¢"** coskz + e~ %% cos? kz) + 29z = constant,

or

e 41~ 2e"* coskz + -2[—]7 =0. (C3)

We choose the constant to be zero on the right-hand side of the equation because the apex
of the bubble is a stagnation point, with v, = v, = 0, and its height is 2 = 0. Thus it is
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clear from Eq. (C1) that the constant is zero for this trajectory. Along the bubble surface,
Eq. (C2) applies, so we incert that conditior into Eq. (C3). The result is

(kx)? _9 kz smkz

sin kz  tankz kU" In( ) =0
or
u’ta.uu—2usin’u+sin’uta.nu+ lcU’ sin? u tan u In( uu)=0, (C4)

where u = kz.

Now, for any particular choice of g and U, this expressiun can only be satisfied exactly
at a single value of z in addition to £ = 0. It cannot be satisfied over the entire bubble
surface. This is the result of having chosen the simplified potential and stream functions
with only the first term of the sum. Keeping more terms in the sum would allow a more
complete solution. Nevertheless we can determine a reasonably accurate value for U by
requiriag that Eq. (C4) be ssatisfied in a fust-order neighborhood of z = 0. Accordingly
we expand the functions in Eq. (C4):

‘
sin u = u? - 3‘3— + O[u®);

u®
tanu =u+ 3t O[u®);

sinutanu = u® + O[u7]-

sinu u?

_ oy 6).
sin utanuln(ﬂ) = ——+O[u ]-
So Eq. (C4) becomes
5 5
3, W g3 2u 29 “_ N =
v+ 2u+3+ ~ 5076 + O[u’]
implying that v
T
33 3kU?

or

_ ‘/i _ ,/ﬂ ~
U=\/35 = 5y = 0.2303/g .

This is exactly the result of Layzer (1955) for the case of asymptotic steady-state two-
dimensional flow between paralle! walls. He takes as the length scale the half-distance
between the walls a = A\/2 , s0 that

U= \/% ~ 0.3257,/74.
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Layzer also considers the flow of a bubble of circular cross-section, with radius R. He
obtains in this case
U ~ 0.5108,/¢R.

Thus we see taat larger bubbles rise faster than smaller bubbles. This dependence
is opposite to that for the linear stage of the instability, in which we found that smaller
wavelengths grow faster than larger wavelengths.

D. Satriration and multimode interactions in intermediate-stage Rayleigh-
Taylor instability ]

The linear analysis of Sec. A depends on the validity of the small-arfiplitude assump-
tion, that is, on the extent to which first-order quantities are in fact much smal'er than
the corresponding zeroth-order quantities. However, if the exponential growth that char-
acterizes the linear stage were to persist long enough, the small-amplitude assumption
would evenivally be violated for any initial perturbation, however small. The departure
of the instability evolution from linearity is called saturation. We can estimate the con-
ditions required for linearity by considering, for example, the first-order acceleration of a
sinusoidal perturbation mode and its relation to the zeroth-order acceleration of gravity g.
The z-velocity of a pure mode with wavevector k orie. ‘ed along % cen be described by

vs(z,2,t) = W(z)e™ cos kz,

so that the displacement of the interface (initially at z = 0) is

1 4
n(:,t):/ vs(z,0,t')dt' = %v,(m,o,t).
0

The acceleration of the interface is

a"__'(;; 08 — 1vu(z,0,t) = v¥n(z, ).

Linearity requires that this acceleration be much smaller than gravity: 9*n << g. Since
the linear growth rate v = \/kg4, this is Akn << 1. Since A < 1, a sufficient condition
for linearity is simply

- kn<<1.

In terms of the wavelength of the mode, this condition is
n << A/2m >~ 0.16).

The consequence of saturation is that the growth of the instability is no longer ex-
ponential, bu’ begins to approach the constant-velocity bubble rise typical of late-stage
growth. A more stringent estimate of the requirement for linearity comes from estimating
the interface displacement at which the linear-stage interface velocity equals the late-stage
bubble velocity. As we have just seen, the interface velocity is v,(z,0,t) = 97, while the
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bubble velocity is \/g73k. Equating these, for A = 1, gives kn = 1/v3 =~ 0.58, so that
linearity requires

n << %% ~ 0.09A. (D1)

Another consequence of the onset of nonlinearity is that separate perturbation modes
on the interface, which grow as if they are isolated during the linear stage, begin to notice
one another’s presence. This occurs because they begin to affect the zeroth-order flow field
which drives the instakility; for example, a short-wavelength mode riding aloug on the
bubble of a long-wavelength mode experiences a difierent effective gravity than the initial
g, because of the additional acczleration in the long-wavelength bubble. This interaction
is called mode coupling.

Real surfaces in actual ICF experiments have structure at many- scales, from millime-
ters to angstroms. The structure arises for a variety of reasons, including the inherent
heterogeneous crystalline structure of materials, as well as marks left by fabrication and
machining. When Fourier analyzed, the surfaces typically have a full spectrum, with apec-
tral power at all modes up to some very high wavenumber. An important question arises
concerning how saturation occurs in a full spectrum, as opposed to the case of a pure mode
just discussed. This is because a group of modes with nearly equal wave vectors can com-
bine constructively over a region of the surface, producing a structure whose net amplitude
is rauch larger than the modes’ individual amplitudes. It seems clear that the saturation of
this structure should occur when its net amplitude is about 10% of its effective wavelength,
as discussed above for pure sinusoids. This means that tue individual modes s::mming to
produce this structure must saturate a good deal earlier than we would expect if they were
isolated from other modes and individually obeying the inequality (D1). A prescription for
determining when modes saturate in a full spectrum was developed by Haan (1989) and is
known as the Haan saturation model. It expresses a type of modal interaction which is a
short-range interaction in wavevector space, involving as it does only neighbering modes
which stay in phase over a large enough region to form a structure of significantly higher
amplitude than any of the individual modes.

The pasic conceptual point of the Haan model is that a pure mode cannot be distin-
guished from a superposition of several modes except by 1measurements over a sufficiently
large spatial region. The region must be large enough that the individual modes in the
superposition have gone out of phase. In regions smaller than this, the saturation of the
multimode superposition must occur in the same way as the saturation of the pure mode.
For example, consider two modes of nearly equal wavelength (A and A(1 + ¢, for example),
equal amplitudes, and parallel wavevectors. The modes stay in phuse for a large distance
because their wavelengths are so nearly equal, but eventually, over a distance A/2¢, the
modes become exactly out of phase. Where they are in phase, they combine to create a net
perturbation whose amplitude is twice the individual amplitudes and whose wavelength is
approximately A. When the net perturbation saturates, the two superposed modes clearly
have amplitudes which are about half the value of the single-mode saturation amplitude,
yet they must individually saturate.
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